On Rotations and the Generation of Binary Trees

نویسندگان

  • Joan M. Lucas
  • Dominique Roelants van Baronaigien
  • Frank Ruskey
چکیده

The rotation graph, G n , has vertex set consisting of all binary trees with n nodes. Two vertices are connected by an edge if a single rotation will transform one tree into the other. We provide a simpler proof of a result of Lucas 7] that G n contains a Hamilton path. Our proof deals directly with the pointer representation of the binary tree. This proof provides the basis of an algorithm for generating all binary trees that can be implemented to run on a pointer machine and to use only constant time between the output of successive trees. Ranking and unranking algorithms are developed for the ordering of binary trees implied by the generation algorithm. These algorithms have time complexity O(n 2) (arithmetic operations). We also show strong relationships amongst various representations of binary trees and amongst binary tree generation algorithms that have recently appeared in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Heuristic Algorithm for Drawing Binary Trees within Arbitrary Polygons Based on Center of Gravity

Graphs have enormous usage in software engineering, network and electrical engineering. In fact graphs drawing is a geometrically representation of information. Among graphs, trees are concentrated because of their ability in hierarchical extension as well as processing VLSI circuit. Many algorithms have been proposed for drawing binary trees within polygons. However these algorithms generate b...

متن کامل

Profile and Height of Random Binary Search Trees

The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.

متن کامل

0 Rank - Balanced Trees

Since the invention of AVL trees in 1962, many kinds of binary search trees have been proposed. Notable are red-black trees, in which bottom-up rebalancing after an insertion or deletion takes O(1) amortized time and O(1) rotations worst-case. But the design space of balanced trees has not been fully explored. We continue the exploration. Our contributions are three. We systematically study the...

متن کامل

A linear time algorithm for binary tree sequences transformation using left-arm and right-arm rotations

In this paper we consider a transformation on binary trees using new types of rotations. Each of the newly proposed rotations is permitted only at nodes on the left-arm or the right-arm of a tree. Consequently, we develop a linear time algorithm with at most n− 1 rotations for converting weight sequences between any two binary trees. In particular, from an analysis of aggregate method for a seq...

متن کامل

Parallel Generation of t-ary Trees

A parallel algorithm for generating t-ary tree sequences in reverse B-order is presented. The algorithm generates t-ary trees by 0-1 sequences, and each 0-1 sequences is generated in constant average time O(1). The algorithm is executed on a CREW SM SIMD model, and is adaptive and cost-optimal. Prior to the discussion of the parallel algorithm a new sequential generation with O(1) average time ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Algorithms

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1993